| Introduction | Cone Logic | Satisiability | Interval logics | Outline |
|--------------|------------|---------------|-----------------|---------|
| 000          | 0000       | 00000         | 0000            | 0       |
|              |            |               |                 |         |

A Decidable Spatial Logic With Cone-shaped Cardinal Directions

# Angelo Montanari<sup>1</sup>, Gabriele Puppis<sup>2</sup>, Pietro Sala<sup>1</sup>

Departement of Mathematics and Computer Science, University of Udine, Italy {angelo.montanari,pietro.sala}@dimi.uniud.it

Computing Laboratory, Oxford University, England gabriele.puppis@comlab.ox.ac.uk

## CSL'09

| Introduction             | Cone Logic | Satisiability | Interval logics | Outline |
|--------------------------|------------|---------------|-----------------|---------|
| •••                      |            |               |                 |         |
| What is this talk about? |            |               |                 |         |

## Shortly

This talk is about **deciding satisfiability** of formulas from a suitable **modal logic** under interpretation over **labeled rational planes**  $\mathcal{L} : \mathbb{Q} \times \mathbb{Q} \rightarrow \mathscr{P}(A)$ .

| Introduction             | Cone Logic | Satisiability | Interval logics | Outline |
|--------------------------|------------|---------------|-----------------|---------|
| 000                      |            |               |                 |         |
| What is this talk about? |            |               |                 |         |

## An example – Compass Logic (Venema '90)

Formulas of **Compass Logic** are defined by the following grammar:

$$\begin{split} \varphi &:= a & | \neg \varphi & | \varphi \lor \varphi & | \varphi \land \varphi \\ & \Diamond \varphi & | \Diamond \varphi & | \Diamond \varphi & | \Diamond \varphi \\ & \Box \varphi & | \Box \varphi & | \Box \varphi & | \Box \varphi. \end{split}$$









| Introduction             | Cone Logic | Satisiability | Interval logics | Outline |
|--------------------------|------------|---------------|-----------------|---------|
| 000                      |            |               |                 |         |
| What is this talk about? |            |               |                 |         |

## Satisfiability problem

The **satisfiability problem** consists of deciding, given a formula  $\varphi$ , whether there exist *a labeled structure*  $\mathcal{L}$  and *a point* p such that

 $\mathcal{L}, p \vDash \phi.$ 

| Introduction             | Cone Logic | Satisiability | Interval logics | Outline |
|--------------------------|------------|---------------|-----------------|---------|
| 000                      |            |               |                 |         |
| What is this talk about? |            |               |                 |         |

### Satisfiability problem

The **satisfiability problem** consists of deciding, given a formula  $\varphi$ , whether there exist a *labeled structure*  $\mathcal{L}$  and a *point* p such that

 $\mathcal{L}, p \models \phi.$ 

Unfortunately...

Theorem (Marx and Reynolds '99) The satisfiability problem for Compass Logic is **undecidable**. (one can encode an infinite tiling using  $\diamondsuit$ ,  $\diamondsuit$ ,  $\diamondsuit$ ,  $\diamondsuit$ ,  $\diamondsuit$ ...)

Decidability may be recovered by weakening Compass Logic...











| Introduction   | Cone Logic | Satisiability | Interval logics | Outline |
|----------------|------------|---------------|-----------------|---------|
| 000            | ○○●○       | 00000         | 0000            | 0       |
| Expressiveness |            |               |                 |         |

Cone Logic makes it easy to express spatial relationships based on (approximate) cardinal directions...

## Example 1

"For every pair of points p and q labeled, respectively, by a and b, q is to the North-East of p."

is expressed by the Cone Logic formula

$$\varphi = \blacksquare (a \rightarrow \blacksquare \neg b \land \blacksquare \neg b \land \blacksquare \neg b)$$

where  $\blacksquare$  is a shorthand for  $\square$   $\square$  (equivalent to "for every point of the plane").

...and it can also express also interesting properties of the plane!









| Introduction | Cone Logic | Satisiability | Interval logics | Outline |
|--------------|------------|---------------|-----------------|---------|
| 000          | 0000       | •••••         |                 | 0       |
| Stripes      |            |               |                 |         |

To solve the satisfiability problem for Cone Logic, we consider *portions* of the rational plane:

### Stripe

A stripe of a labeled rational plane  $\mathcal{L} : \mathbb{Q} \times \mathbb{Q} \to A$  is the restriction  $\mathcal{L}_{[x_0, x_1]}$  of  $\mathcal{L}$  to a region of the form  $[x_0, x_1] \times \mathbb{Q}$ .

### Fact

Any Cone Logic formula  $\phi$  can be translated into a formula  $\phi_{[x_0,x_1]}$  in such a way that, for every labeled rational plane  $\mathcal{L}$ ,

$$\begin{array}{ll} \exists \ p \in \mathbb{Q} \times \mathbb{Q}, \\ \mathcal{L}, p \vDash \phi \end{array} \quad \ \ \text{iff} \qquad \begin{array}{ll} \exists \ p \in [x_0, x_1] \times \mathbb{Q}, \\ \mathcal{L}_{[x_0, x_1]}, p \vDash \phi_{[x_0, x_1]}. \end{array}$$

⇒ We can restrict our attention to satisfiability over a stripe  $\mathcal{L}_{[0,1]}$ (and we forget, for the moment, the operators  $\diamondsuit^+$ ,  $\diamondsuit^+$ , ...).







By exploiting isomorphism between the orders over [0,1] and over  $\left\{\frac{i}{2^n}:n\in\mathbb{N},\,0\leqslant i\leqslant 2^n\right\}$ , we decompose the stripe  $\mathcal{L}_{[0,1]}$  into a **tree structure**  $\mathfrak{T}...$ 

















### Decompositions of stripes

...In such a way, we can get rid of the interiors of the (sub-)stripes and focus on the formulas (of a certain bounded complexity) that hold along their borders.





Decompositions of stripes

...In such a way, we can get rid of the interiors of the (sub-)stripes and focus on the formulas (of a certain bounded complexity) that hold along their borders.























| Introduction               | Cone Logic | Satisiability | Interval logics | Outline |
|----------------------------|------------|---------------|-----------------|---------|
|                            |            | 00000         |                 |         |
| Tree pseudo-model property |            |               |                 |         |

Since the equivalence relation  $\approx$  has *finite index*, we have that

### Proposition (a tree pseudo-model property)

Any given stripe  $\mathcal{L}_{[0,1]}$  can be represented by means of a suitable infinite binary tree  $\mathfrak{T}$  whose vertices are labeled over a finite alphabet

(we call the structure  $\mathcal{T}$  a **tree decomposition** of  $\mathcal{L}_{[0,1]}$ ).

| Introduction               | Cone Logic | Satisiability | Interval logics | Outline |
|----------------------------|------------|---------------|-----------------|---------|
|                            |            | 00000         |                 |         |
| Tree pseudo-model property |            |               |                 |         |

Since the equivalence relation  $\approx$  has *finite index*, we have that

## Proposition (a tree pseudo-model property)

Any given stripe  $\mathcal{L}_{[0,1]}$  can be represented by means of a suitable *infinite binary tree*  $\mathcal{T}$  whose vertices are labeled over a finite alphabet (we call the structure  $\mathcal{T}$  a **tree decomposition** of  $\mathcal{L}_{[0,1]}$ ).

...However, tree decompositions must be properly constrained so that they correctly represents some concrete stripes.

#### Examples of constraints on a tree decomposition

- For every pair of *sibling* vertices ν = [x<sub>0</sub>, x<sub>1</sub>] and ν' = [x'<sub>0</sub>, x'<sub>1</sub>] in T, the labeling of the right border of ν has to *match* with the labeling of the left border of ν' (in such a way, we can assume x<sub>1</sub> = x'<sub>0</sub>),
- There is no infinite path π in ℑ such that, for every vertex v ∈ π, < α appears on the left border of v and neither < α nor α appear on the right border of v.</li>

| Introduction                | Cone Logic | Satisiability | Interval logics | Outline |
|-----------------------------|------------|---------------|-----------------|---------|
|                             |            | 00000         |                 |         |
| Reduction to a CTL fragment |            |               |                 |         |

#### Theorem 1 (reduction to a CTL fragment)

Constrained tree decompositions can be defined in a **fragment of CTL**, which we denote **CTL**<sup>-</sup>.

| Introduction                | Cone Logic | Satisiability | Interval logics | Outline |
|-----------------------------|------------|---------------|-----------------|---------|
|                             |            | 00000         |                 |         |
| Reduction to a CTL fragment |            |               |                 |         |

#### Theorem 1 (reduction to a CTL fragment)

Constrained tree decompositions can be defined in a **fragment of CTL**, which we denote **CTL**<sup>-</sup>.

Theorem 2 (deciding satisfiability of CTL<sup>-</sup>)

The satisfiability problem for  $CTL^-$  ( $\Rightarrow$  Cone Logic) is in **PSPACE**.

#### Proof idea

CTL<sup>-</sup> formulas are *conjunctions* of the following basic formulas:

**4 AG**(*left*  $\lor$  *right*), **AG** $\neg$ (*left*  $\land$  *right*), **AG**(**EX***left*  $\land$  **EX***right*)

⇒ Checking satisfiability of these formulas amounts at deciding **universality of Büchi automata**.











| Introduction                  | Cone Logic | Satisiability | Interval logics | Outline |
|-------------------------------|------------|---------------|-----------------|---------|
| An interesting interval logic | 0000       |               |                 |         |

## Cone Interval Logic

We can introduce a new **interval temporal logic** by means of the following grammar:

$$\varphi := \mathbf{a} \quad | \neg \varphi \quad | \quad \varphi \lor \varphi \quad | \quad \varphi \land \varphi \quad | \\ \langle sub \rangle \varphi \quad | \quad \langle super \rangle \varphi \quad | \quad \langle younger \rangle \varphi \quad | \quad \langle elder \rangle \varphi \quad | \\ [sub] \varphi \quad | \quad [super] \varphi \quad | \quad [younger] \varphi \quad | \quad [elder] \varphi.$$

Formulas are evaluated over labeled intervals of the rational line.

Note: *sub* and *super* correspond to Allen's interval relations D and  $\overline{D}$ , while *younger* and *elder* are unions of other Allen's interval relations (e.g., *elder* =  $O \cup E \cup A \cup L$ ).

Moreover, Cone Interval Logic generalizes previous interval temporal logics (cf. [Bresolin, Goranko, Montanari, Sala '08]).

| Introd<br>000 | uction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Cone Logic | Satisiability<br>00000 | Interval logics | Outline<br>O |  |  |
|---------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|------------------------|-----------------|--------------|--|--|
| Defina        | bility in Cone Logic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |            |                        |                 |              |  |  |
|               | Fact 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            |                        |                 | 1            |  |  |
|               | The modal operators $\langle sub \rangle$ , $\langle super \rangle$ , $\langle younger \rangle$ , $\langle elder \rangle$ , are definable by means of the modal operators $\langle \mathbf{p} \rangle$ , $\langle $ |            |                        |                 |              |  |  |



| Introduction   | Cone Logic | Satisiability | Interval logics | Outline |
|----------------|------------|---------------|-----------------|---------|
| 000            | 0000       | 00000         |                 | 0       |
| Satisfiability |            |               |                 |         |

From previous results we have:

Corollary (decidability of Cone Interval Logic)

The satisfiability problem for Cone Interval Logic is in **PSPACE**.

| Introduction   | Cone Logic | Satisiability | Interval logics | Outline |
|----------------|------------|---------------|-----------------|---------|
| 000            | 0000       | 00000         |                 | 0       |
| Satisfiability |            |               |                 |         |

From previous results we have:

Corollary (decidability of Cone Interval Logic) The satisfiability problem for Cone Interval Logic is in **PSPACE**.

## Theorem (Shapirovsky and Shehtman '03)

The satisfiability problem for the fragment of Cone Interval Logic that comprised only the modal operators  $\langle sub \rangle$  and [sub] is **PSPACE-hard**.

⇒ This also implies that the decision procedure for satisfiability of Cone Logic formulas is **optimal**.

| Introd<br>000 | uction                                                            | Cone Logic<br>0000 | Satisiability<br>00000 | Interval logics<br>0000 | Outline<br>• |  |
|---------------|-------------------------------------------------------------------|--------------------|------------------------|-------------------------|--------------|--|
| Outlin        | e                                                                 |                    |                        |                         |              |  |
|               | Summary                                                           |                    |                        |                         |              |  |
|               | In conclusion, Cone Logic                                         |                    |                        |                         |              |  |
|               | <ul> <li>is a weakening of Venema's Compass Logic,</li> </ul>     |                    |                        |                         |              |  |
|               | <ul> <li>has a PSPACE-complete satisfiability problem,</li> </ul> |                    |                        |                         |              |  |

• subsumes interesting interval temporal logics.

| Introd<br>000 |         | Cone L<br>0000 | ₋ogic | Satisiability<br>00000 | Interval lo<br>0000 | gics Outline<br>● |  |
|---------------|---------|----------------|-------|------------------------|---------------------|-------------------|--|
| Outlin        | e       |                |       |                        |                     |                   |  |
|               | Summary |                |       |                        |                     |                   |  |
|               |         |                |       |                        |                     |                   |  |

- In conclusion, Cone Logic
  - is a weakening of Venema's Compass Logic,
  - has a **PSPACE-complete** satisfiability problem,
  - subsumes interesting interval temporal logics.

## Possible generalizations?

- spaces with more than 2 dimensions (e.g.,  $\mathbb{Q}^3$ ),
- modal operators based on "narrow" cones,
- satisfiability with different underlying orders (e.g., real plane, discrete grid).

| Introductio<br>000 |        | Cone Logic<br>0000 | Satisiability<br>00000 | Interval logics<br>0000 | Outline<br>• |
|--------------------|--------|--------------------|------------------------|-------------------------|--------------|
| Outline            |        |                    |                        |                         |              |
| Su                 | ummary |                    |                        |                         | 1            |

In conclusion, Cone Logic

- is a weakening of Venema's Compass Logic,
- has a **PSPACE-complete** satisfiability problem,
- subsumes interesting interval temporal logics.

## Possible generalizations?

- spaces with more than 2 dimensions (e.g.,  $\mathbb{Q}^3$ ),
- modal operators based on "narrow" cones,
- satisfiability with different underlying orders (e.g., real plane, discrete grid).

Knank Voul