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What is this talk about?

Shortly

This talk is about deciding satisfiability of formulas
from a suitable modal logic under interpretation over
labeled rational planes L : Q×Q → P(A).
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An example – Compass Logic (Venema ’90)

Formulas of Compass Logic are defined by the following grammar:

ϕ := a | ¬ϕ | ϕ ∨ ϕ | ϕ ∧ ϕ |

ϕ | ϕ | ϕ | ϕ |

ϕ | ϕ | ϕ | ϕ.

Formulas are evaluated over labeled points of the rational planes...
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What is this talk about?

Satisfiability problem

The satisfiability problem consists of deciding, given a formula ϕ,
whether there exist a labeled structure L and a point p such that

L,p � ϕ.

Unfortunately...

Theorem (Marx and Reynolds ’99)

The satisfiability problem for Compass Logic is undecidable.

(one can encode an infinite tiling using , , , ...)

Decidability may be recovered by weakening Compass Logic...
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Weakening Compass Logic

Cone Logic as a weakening of Compass logic

Instead of having modalities for the positive/negative x-/y-axes...

existential
modalities:

L universal
modalities:

...we introduce modalities for cone-shaped regions:

existential
modalities:

L

universal
modalities:
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Syntax

Cone Logic formulas

Formulas of Cone Logic are defined by the following grammar:

ϕ := a | ¬ϕ | ϕ ∨ ϕ | ϕ ∧ ϕ |

ϕ | ϕ | ϕ | ϕ |

ϕ | ϕ | ϕ | ϕ

|
+ϕ | +ϕ | +ϕ | +ϕ |
+ϕ | +ϕ | +ϕ | +ϕ

The modal operators , , , , , , ,
quantify over points of the four open quadrants, e.g.,

Dom
( )

=
{
q = (x,y) : x > 0, y > 0

}
.

The modal operators +, +, +, +, +, +, +, +

quantify over points of the four semi-closed quadrants, e.g.,

Dom
(

+
)

=
{
q = (x,y) : x > 0, y > 0

}
\

{
(0, 0)

}
.
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Expressiveness

Cone Logic makes it easy to express spatial relationships
based on (approximate) cardinal directions...

Example 1

“For every pair of points p and q labeled, respectively,
by a and b, q is to the North-East of p.”

is expressed by the Cone Logic formula

ϕ =
(
a → ¬b ∧ ¬b ∧ ¬b

)
where is a shorthand for
(equivalent to “for every point of the plane”).

...and it can also express also interesting properties of the plane!
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Expressiveness

Example 2

Let A be the lattice <
<

<

<

<
<

and consider the Hintikka-like formula

ϕA =
∨

a∈A

a ∧
∧

a6=b

¬
(
a ∧ b

)
∧

∧
a∈A

(
a →

∧
b6a

b ∧
∧

b>a

b ∧
∨

b6a

b ∧
∨

b>a

b

)

L
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Stripes

To solve the satisfiability problem for Cone Logic,
we consider portions of the rational plane:

Stripe

A stripe of a labeled rational plane L : Q×Q → A is the
restriction L[x0,x1] of L to a region of the form [x0, x1]×Q.

Fact

Any Cone Logic formula ϕ can be translated into a formula
ϕ[x0,x1] in such a way that, for every labeled rational plane L,

∃ p ∈ Q×Q.
L,p � ϕ

iff
∃ p ∈ [x0, x1]×Q.

L[x0,x1],p � ϕ[x0,x1].

⇒ We can restrict our attention to satisfiability over a stripe L[0,1]

(and we forget, for the moment, the operators +, +, ...).
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Decompositions

Decompositions of stripes

L[0,1]

0 1

By exploiting isomorphism between the orders
over [0, 1] and over

{
i

2n : n ∈ N, 0 6 i 6 2n
}

,
we decompose the stripe L[0,1] into a tree structure T...
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Decompositions

Decompositions of stripes

...In such a way, we can get rid of the interiors of the (sub-)stripes
and focus on the formulas (of a certain bounded complexity)
that hold along their borders.
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Filtration

Finite abstractions of stripes

Given a (sub-)stripe L[x0,x1], we define an equivalence ≈ over Q
such that y ≈ y ′ iff, for all formulas α (of bounded complexity),

L, (x0,y) �
α / α /

α / α
L, (x1,y) �

α / α /

α / α

m m

L, (x0,y ′) �
α / α /

α / α
L, (x1,y ′) �

α / α /

α / α

x0 x1

y

≈

y ′
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Tree pseudo-model property

Since the equivalence relation ≈ has finite index, we have that

Proposition (a tree pseudo-model property)

Any given stripe L[0,1] can be represented by means of a suitable
infinite binary tree T whose vertices are labeled over a finite alphabet

(we call the structure T a tree decomposition of L[0,1]).

...However, tree decompositions must be properly constrained
so that they correctly represents some concrete stripes.

Examples of constraints on a tree decomposition

For every pair of sibling vertices v = [x0, x1] and v ′ = [x ′0, x ′1]
in T, the labeling of the right border of v has to match with
the labeling of the left border of v ′

(in such a way, we can assume x1 = x ′0),

There is no infinite path π in T such that, for every
vertex v ∈ π, α appears on the left border of v and

neither α nor α appear on the right border of v.
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Reduction to a CTL fragment

Theorem 1 (reduction to a CTL fragment)

Constrained tree decompositions can be defined
in a fragment of CTL, which we denote CTL−.

Theorem 2 (deciding satisfiability of CTL−)

The satisfiability problem for CTL− (⇒ Cone Logic) is in PSPACE.

Proof idea

CTL− formulas are conjunctions of the following basic formulas:

1 AG(left ∨ right), AG¬(left ∧ right), AG(EXleft ∧ EXright)

2 AG(α), AG(α → AFα ′),
where α,α ′ contains only positive occurrences of
the modal operator AX and no other operators.

⇒ Checking satisfiability of these formulas amounts
at deciding universality of Büchi automata.
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From points to intervals

There is a natural correspondence between intervals I = [x,y],
with x < y, and points p = (x,y) of the rational plane...

Spatial interpretation of intervals and their relationships

x
=
yx < y

x > y

p0

x0

y0

time line

I0

x0 y0

reference interval
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An interesting interval logic

Cone Interval Logic

We can introduce a new interval temporal logic
by means of the following grammar:

ϕ := a | ¬ϕ | ϕ ∨ ϕ | ϕ ∧ ϕ |〈
sub
〉
ϕ |

〈
super

〉
ϕ |

〈
younger

〉
ϕ |

〈
elder

〉
ϕ |[

sub
]
ϕ |

[
super

]
ϕ |

[
younger

]
ϕ |

[
elder

]
ϕ.

Formulas are evaluated over labeled intervals of the rational line.

Note: sub and super correspond to Allen’s interval relations
D and D̄, while younger and elder are unions of other Allen’s
interval relations (e.g., elder = O ∪ E ∪A ∪ L).

Moreover, Cone Interval Logic generalizes previous interval
temporal logics (cf. [Bresolin, Goranko, Montanari, Sala ’08]).
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Definability in Cone Logic

Fact 1

The modal operators
〈

sub
〉
,
〈

super
〉
,
〈

younger
〉
,
〈

elder
〉
, ... are

definable by means of the modal operators , , , , ...

Fact 2

The “yellow region” of valid intervals (i.e.,
{
p = (x,y) : x < y

}
)

is definable (up to “deformations”) inside the rational plane:

(>∨⊥∨ π) ∧ (¬>∨ ¬⊥) ∧ (¬>∨ ¬π) ∧ (¬⊥∨ ¬π) ∧

(> → >∧ >) ∧ (⊥ → ⊥∧ ⊥) ∧

(π → +>∧ +⊥) ∧ ( π∧ π → π∨ π∨ π).

π

>

⊥
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Satisfiability

From previous results we have:

Corollary (decidability of Cone Interval Logic)

The satisfiability problem for Cone Interval Logic is in PSPACE.

Theorem (Shapirovsky and Shehtman ’03)

The satisfiability problem for the fragment of Cone Interval Logic
that comprised only the modal operators

〈
sub
〉

and
[
sub
]

is
PSPACE-hard.

⇒ This also implies that the decision procedure for
satisfiability of Cone Logic formulas is optimal.
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Outline

Summary

In conclusion, Cone Logic

is a weakening of Venema’s Compass Logic,

has a PSPACE-complete satisfiability problem,

subsumes interesting interval temporal logics.

Possible generalizations?

spaces with more than 2 dimensions (e.g., Q3),

modal operators based on “narrow” cones,

satisfiability with different underlying orders
(e.g., real plane, discrete grid).
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